PivotItem.DataRange Off By One Row Bug

PivotItem.DataRange Off By One Row Bug

This week I ran into a pivot table VBA issue I’ve never noticed before. When a pivot table has more than one data field, referring to a PivotItem.DataRange returns a range one row down from where it should be. Below you can see that the PivotItem.DataRange address is one row off and that the selection is below the pivot table:

PivotIItem.DataRange Offby One

If the pivot table has only one data field, e.g., if I get rid of “Sum of Total” above, the issue goes away.

I found one reference to this by Macro Marc on SO, but nothing else on the web. It seems like it would be a well-known thing though, especially if it’s been around for a while.

I’m curious if anybody knows whether this has been reported as a bug. I noticed it on my home computer running Office 365 Pro Plus. I’d be interested to hear if it’s on other versions.

My Workaround

In my very limited testing it seems like there isn’t a similar issue for PivotFields. So one idea is to compare the first row of a pivot field against the first row of its first pivot item and use the difference, if any, to offset the PivotItem.DataRange back to where it should be. However, I’m not sure that my concept of “first” will always be the same as Excel’s. Anyways I’m using this function:

Function GetPivotItemOffsetBugCorrection(pvt As Excel.PivotTable) As Long
'Only occurs if the pivot table has more than one data field
If pvt.DataFields.Count = 1 Then
   Exit Function
End If

GetPivotItemOffsetBugCorrection = pvt.VisibleFields(1).DataRange.Row - _
    pvt.VisibleFields(1).VisibleItems(1).DataRange.Row
End Function

Then I use it like this in places where I refer to a pivot item’s data range:

Set pvt = pvtItem.Parent.Parent
PivotItemOffsetBugCorrection = GetPivotItemOffsetBugCorrection(pvt)
For Each cell In pvtItem.DataRange.Offset(PivotItemOffsetBugCorrection)

Yuck!

If you’ve got a good solution for dealing with this, or any info, please leave a comment.

Identify a Pivot Table’s Values Field

Identify Pivot Table Values Field

Over the next few posts I plan to delve into a couple of functions I’ve written to identify areas in a pivot table. I also want to do a quick post on a pivot quirk I noticed recently. I then plan to roll it up into a post on my new-and-improved per-pivot-item conditional formatting tool. It’s good to have plans, right? Anyways, let’s get started with a function to identify a pivot table’s Values field.

I deduced the following just by messing around – I couldn’t find anything on the web about identifying a Values field. If I got something wrong, or if you have a better way to do this, please leave a comment.

What is a Values Field?

The Values field is the one that appears when you have more than one data field. Its location in the Rows or Columns area of the pivot table dialogs controls the grouping of those data fields. In the following example, I’ve grouped the data area by data fields within years. In other words, the two summing data fields appear side-by-side for each year:

Values Field by years then values

In the next example I’ve dragged the Value field up and now the data area grouping is for years within data fields:

Values Field by values then years

Some pivot table layouts, such as the one below, don’t show the word “Values” anywhere in the pivot table, but it still shows in the pivot table dialog:

Values Field Column Labels

Like all pivot fields, the Values field can be renamed. Note that though I changed it to “Frodo” in the pivot table, it still says “Values” in the dialog:

Values Field by values called Frodo

Everything I’ve said about the Columns area of the pivot dialog applies to the Rows area. The Values field behaves the same way there.

Identifying the Values Field in VBA

So, anyways, I wanted a VBA function that returns a pivot table’s Values field if it has one. When figuring out how to do this I asked myself:

Is the Values field a PivotTable.DataField or a PivotTable.ColumnField/RowField?

The answer is both, kind of. So, for instance, in the examples pictured above typing the following into the immediate window returns “Values”:

? ActiveCell.PivotTable.ColumnFields("Values").Name

And so does this:

? ActiveCell.PivotTable.DataFields("Values").Name

So it looks like the Values field is both a data and column (or row) field. To further confirm this, note that this statement returns True:

? ActiveCell.PivotTable.DataFields("Values").Orientation = xlColumnField

So, even though it’s both a Data and Column (or Row) field it looks like it’s a bit more of a Column field (I’m going to stop saying “or Row” now). This is backed up by the fact that you can’t refer to it’s Data personality using an index. In other words, the following returns an error:

? ActiveCell.PivotTable.DataFields(3).Name (1 and 2 return the two other data fields)

Furthermore, if you check the DataFields.Count for the example above the count is only two.

Cutting to the Chase

In addition to the above, I’ve got one more informational tidbit: if you change the name of the Values field to “Frodo,” both its Data and Column selves refer to themselves as “Frodo.” So even though, as we’ve seen above, the dialog box continues to use the word “Values” to refer to this field, ? ActiveCell.PivotTable.DataFields("Values").Name gets you a runtime error 1004.

This means that you can’t just refer to the values field using “Values” in either its DataField or ColumnField version. If you do and a user changes its name you’re out of luck.

Fortunately, this has an upside, and it’s not just that I have something to blog about. It means that a Values field name is the only field name in the pivot table that can be repeated for a Data field and a Column field. Usually two fields can’t have the same name. For example, in the examples above if you try to rename “Year” or “Values” to “Sum of Unit Cost” you’ll get a “Field name already exists” error. But in the case of a Values field both its Data and Columm/Row references will be the same name.

This means you can identify a pivot table’s Value field by finding a row or column field that has the same name as a data field. Cool, eh?

The Function

Function GetValueField(pvt As Excel.PivotTable) As Excel.PivotField
Dim pvtField As Excel.PivotField
Dim TestField As Excel.PivotField
Dim ValueField As Excel.PivotField
 
'If there's only one data field then there won't be a Values field
If pvt.DataFields.Count = 1 Then
    GoTo exit_point
End If
 
For Each pvtField In pvt.PivotFields
    On Error Resume Next
    'test each non-data field for a data field with a matching name
   Set TestField = pvt.DataFields(pvtField.Name)
    On Error GoTo 0
    If Not TestField Is Nothing Then
        'if there's a match then you've got the Values field
        Set ValueField = pvtField
        Exit For
    End If
Next pvtField
Set GetValueField = ValueField
 
exit_point:
End Function

Boom! Let me know if you’ve got a better way, anything to add, etc. And, as always, thanks for dropping by.

Pivot Table Pivot Chart Navigator

Pivot Table Pivot Chart Navigator

This post is about navigating between pivot tables and pivot charts. The sample workbook contains a Pivot Table and Pivot Chart Navigator userform that lists the workbook’s pivot tables and takes you to them or their associated charts. The workbook also adds buttons to the chart and pivot table right-click menus. These buttons take you to the associated pivot chart or table. I used Ribbon XML for this last part since later versions of Excel don’t allow modification of the chart context menus with VBA. The downloadable workbook can be easily converted to an addin.

pivot chart context menu

I used to eschew pivot charts as far too clunky. Recently though I was given a project that contained many pivot charts. It seemed that, unless I’d just gotten much less picky (not likely), pivot charts work much better than I remembered. This impression was confirmed in a Jon Peltier post, so I know it’s true.

Using XML to Add to Right-Click Menus

As mentioned above, I’ve added a “Go to Source Pivot” button at the bottom of the chart context menu. I’d never used Ribbon XML to make a right-click menu before. The XML part is straightforward.

To create the button I used the Custom UI Editor and added a ContextMenu section to the XML. I also used the Microsoft’s NameX addin to figure out the name that refers to the chart context menu (ContextMenuChartArea) The XML for the chart and pivot table context menus is below. All of this, including links to the Custom UI Editor and the NameX addin, is covered very nicely in this MSDN post.

Since I’m already forced to use XML to modify the chart context menu, I used it for the pivot table context menu too, even though it can still be modified with VBA:

<contextMenus>
    <contextMenu idMso="ContextMenuChartArea">
     <button id="cmdGoToSourcePivot" label="Go To Source Pivot"
        onAction="cmdGoToSourcePivot_onAction"
        getVisible = "cmdGoToSourcePivot_GetVisible"/>
    </contextMenu>
    <contextMenu idMso="ContextMenuPivotTable">
     <button id="cmdGoToPivotChart" label="Go To Pivot Chart"
        onAction="cmdGoToPivotChart_onAction" />
    </contextMenu>
</contextMenus>

VBA to Go To Source Pivot
The code to go to the source pivot is similar to that in my Finding a Pivot Chart’s Pivot Table post. It looks at the charts PivotLayout property, which only exists if a chart is based on a pivot table. I use this same property in the RibbonInvalidate method to only show the “Go To Pivot Table” button when the chart is a pivot chart. That’s one thing I like about programming the ribbon: the code to show or hide tabs, buttons and other controls is generally simpler than it is when using VBA.

VBA to Go To Pivot Chart
The code to go to a pivot table’s chart loops through all chart sheets and charts on worksheets looking for one whose source range is the pivot table’s range:

Function GetPivotChart(pvt As Excel.PivotTable) As Excel.Chart
Dim wbWithPivots As Excel.Workbook
Dim ws As Excel.Worksheet
Dim chtObject As Excel.ChartObject
Dim cht As Excel.Chart

Set wbWithPivots = pvt.Parent.Parent
For Each cht In wbWithPivots.Charts
    If Not cht.PivotLayout Is Nothing Then
        If cht.PivotLayout.PivotTable.TableRange1.Address(external:=True) = pvt.TableRange1.Address(external:=True) Then
            Set GetPivotChart = cht
            Exit Function
        End If
    End If
Next cht
For Each ws In wbWithPivots.Worksheets
    For Each chtObject In ws.ChartObjects
        Set cht = chtObject.Chart
        If Not cht.PivotLayout Is Nothing Then
            If cht.PivotLayout.PivotTable.TableRange1.Address(external:=True) = pvt.TableRange1.Address(external:=True) Then
                Set GetPivotChart = cht
                Exit Function
            End If
        End If
    Next chtObject
Next ws
End Function

PivotNavigator Form
The other element of the sample workbook is a simple-yet-powerful form that navigates through a workbook’s pivot tables and pivot charts.

pivot navigator form

The form opens up with a list of all the pivot tables in the active workbook. Selecting an item in the form list takes you to the selected pivot. Use the Ctrl key with the left and right arrows to toggle between a pivot and its associated chart.

The form is modeless and responds to selection changes in the workbook, updating the list selection when you click into a different pivot or chart. This functionality uses VBA from my last post, which raises an event every time any chart in a workbook is selected.

Download
The sample workbook has the modified right-click menus, the navigation form and a button in the Developer tab to start the form. There’s even instructions!

Filtering Pivot Table Value Fields

Filtering Pivot Table Value Fields

In the old days, before I knew better, when I needed to filter a pivot table Value field I’d do it by using by throwing an autofilter from the Data menu on it:

Pivot with Autofilter

It made me feel dirty but I didn’t know any other way to filter pivot table value fields. Clearly pivot tables provided no filter in the Values columns:

Pivot with no filter

And then one day I read this SuperUser answer by mtone and never looked back. If you don’t know how to apply a Value Filter to a non-Value pivot field I recommend reading it right now:

SuperUser Value Filter answer

Good wasn’t it? I started to write a post about this and realized this was the best explanation I’ve seen. I especially like that mtone explains how choosing different fields to apply the filter to will result in different levels of aggregation, and will change your results.

One Value Field Filtering Oddity

I was prompted to write this post after answering Bijan’s question on Stack Overflow. I quickly helped solve his problem but was perplexed because his original issue was that he was applying a value filter to the value field itself. As I said at the beginning, this isn’t possible. Turns out that’s not quite true. After an extended chat he showed me how he did it.

Before you can do this, you first need to use the field as a Row, Column or Report field. Simply dragging it to the Row area of the Show Filter dialog and then to the Values area will do the trick. Once you do so, you can click the down arrow next to the field name in the pivot’s Show Fields dialog:

show fields with dropdown

At that point you can pick the various Value filters.

value field Value Filters

As Bijan discovered though this doesn’t actually do anything. No filtering occurs (and if it did, it wouldn’t be an aggregate filter anyways). And when you drag the field back to a non-value position it, the filter that is, goes away. Weird and bug-like.

Getting Pivot Table Value Field Characteristics

Getting Pivot Table Value Field Characteristics

This post is about a bit of code that answered somebody’s Stack Overflow question, was fun to write, and taught me a few more things about the pivot table object model, which is my favorite object model. So neat, so tidy, so logical – just like pivot tables themselves.

What, you ask, do I mean by Value Field Characteristics? I mean the page, row and column fields and items that the value field is summing, counting or otherwise valuing. So in the picture below the selected value field has three row items: one each for Continent, Country and State.

value field

The Code

Here’s the code to print that same information to the Immediate window. Like the Excel tooltip in the picture it also lists the Value field name, e.g., Sum of Population, and its source field, e.g., Population. (This can be handy when you’ve modified the value field name to something like else, like “Residents.”):

Sub GetValueFieldStuff()
Dim pvtCell As Excel.PivotCell
Dim pvtTable As Excel.PivotTable
Dim pvtField As Excel.PivotField
Dim pvtItem As Excel.PivotItem
Dim pvtParentField As Excel.PivotField
Dim i As Long

On Error Resume Next
Set pvtCell = ActiveCell.PivotCell
If Err.Number <> 0 Then
    MsgBox "The cursor needs to be in a pivot table"
    Exit Sub
End If
On Error GoTo 0

If pvtCell.PivotCellType <> xlPivotCellValue Then
    MsgBox "The cursor needs to be in a Value field cell"
    Exit Sub
End If

Set pvtTable = pvtCell.PivotTable
For Each pvtField In pvtTable.PageFields
    i = 0
    For Each pvtItem In pvtField.PivotItems
        If pvtItem.Visible Then
            i = i + 1
            Debug.Print "PageField " & pvtField.Name & " - Pivot Item " & i & " is " & pvtItem.Name
        End If
    Next pvtItem
Next pvtField

Debug.Print "Value Field Name is " & pvtCell.PivotField.Name
Debug.Print "Value Field Source is " & pvtCell.PivotField.SourceName

For i = 1 To pvtCell.RowItems.Count
    Set pvtParentField = pvtCell.RowItems(i).Parent
    Debug.Print "Row Item " & i & " is " & pvtCell.RowItems(i).Name & ". It's parent Row Field is: " & pvtParentField.Name
Next i

For i = 1 To pvtCell.ColumnItems.Count
    Set pvtParentField = pvtCell.ColumnItems(i).Parent
    Debug.Print "Column Item " & i & " is " & pvtCell.ColumnItems(i).Name; ". It's parent Column Field is: " & pvtParentField.Name
Next i
End Sub

Before answering this question I didn’t know about the PivotCell.RowItems and PivotCell.ColumnItems properties. They’re pretty cool.

The person who posted this on Stack Overflow was looking to create an “actual” drilldown, which I think meant using the output to write a SQL query. You could modify the output of this routine to do so, as in this pseudocode:

SELECT * FROM qryContinentCountryState
WHERE pvtParentItem.Name = pvtCell.RowItems(i).Name
AND …

Alrighty then. Thanks for dropping by!

Finding a Pivot Chart’s Pivot Table

Finding a Pivot Chart’s Pivot Table

I don’t work with pivot charts very much, but recently I got the job of modifying a dashboard that uses a mess of them. As part of the modification, I’m deleting some of the charts, which is leaving behind unneeded pivot tables – pivot tables with unhelpful names like “PivotTable17.” In order to work with all this I wrote a quick routine for finding a pivot chart’s pivot table.

Until today I was under the impression you could create a pivot chart without having a pivot table. I thought they were just a different kind of representation of what’s in a pivot cache and that, as is true with pivot tables, you could have several feeding directly off one pivot cache. That’s not true. Every pivot chart requires a separate pivot table.

This meant that when I started deleting some pivot charts from the workbook I wanted to reduce the workbook clutter by also deleting their pivot tables. The trick was to find them. At first I tried clicking the ribbon’s “Change Data Source” button, but that points at the data the pivot table/chart combo is based on, not at the pivot table the chart is based on. I found I could see the pivot table name and the sheet it’s on in the pivot chart’s “Select Data” dialog. But then I was still stuck trying to figure out which pivot was which. What a perfect excuse to write some VBA and poke into some previously unexplored object model crannies!

The code below cycles through each pivot chart in a workbook, selects its pivot table and displays a msgbox with info about the pivot table. (In actual practice I collected all the pivot table data and used that to delete any pivot tables that weren’t in the collection. No hand-deleting if I can help it!)

The Code

Sub GetPivotChartSources()
Dim ws As Excel.Worksheet
Dim chtObject As Excel.ChartObject
Dim cht As Excel.Chart
Dim pvt As Excel.PivotTable

For Each ws In ActiveWorkbook.Worksheets
    For Each chtObject In ws.ChartObjects
        Set cht = chtObject.Chart
        If Not cht.PivotLayout Is Nothing Then
            Set pvt = cht.PivotLayout.PivotTable
            'activate the sheet the pivot is on
           pvt.Parent.Activate
            pvt.TableRange2.Cells(1).Select
            MsgBox pvt.Name & " is on " & pvt.Parent.Name & " using data from " & pvt.SourceData
        End If
    Next chtObject
Next ws
End Sub

ChartObjects, PivotLayouts and More

The code above cycles through each ChartObject, which is the container for a chart embedded in a worksheet, as opposed to being its own tab. What we’re really interested in is the ChartObject’s chart object (ha!) so I set a variable to that. Then the key is that pivot charts have a PivotLayout* object, which in turn contains the pivot table object. Once you’ve got that you can access all the usual pivot table properties like Name, SourceData and TableRange2, which is the range containing the entire pivot table including the page filters.

After getting rid of the unneeded pivot tables I went back and ran very similar code to rename them to something more meaningful. First I renamed the charts from “Chart 17”, etc., to something like “chtRegionalRetentionRate” and then substituted this line into the heart of the code above:

pvt.Name = Replace(chtObject.Name, "cht", "pvt")

When I looked around the web for code to do this kind of stuff I didn’t find anything, and had to discover the crucial PivotLayout object on my own. So, as we used to say in the newsgroups, “hth”.

MSDN Errata?
* It seems to me that this MSDN PivotLayout page is wrong, and that it treats the PivotLayout object like the PivotLayout.PivotTable object.

Selection.ListObject and Selection.PivotTable

Selection.ListObject and Selection.PivotTable

In recent posts about using VBA to work with filters I’ve used ActiveCell.ListObject to test whether I’m dealing with a filtered table or a filtered range. At one point it occurred that maybe I should be looking at the Selection’s ListObject instead. For various reasons that doesn’t work, but it made me wonder how Selection.ListObject gets evaluated. For example, what if it spans two tables? And, while we’re at it what about Selection.PivotTable?

To be clear, everything said about Selection in this post actually applies to the more general Range object. It’s just that Selection is the range I’m interested in.

Selection.PivotTable

Let’s start with Pivot Tables. Excel’s help actually says exactly how Range.PivotTable is handled:

Returns a PivotTable object that represents the PivotTable report containing the upper-left corner of the [Selection].

So, Selection.PivotTable returns an error with the selection below because its upper-left corner is outside the pivot:

pivot selection

But this selection will return the pivot table because the upper-left cell of the selection intersects the pivot table:

pivot selection 2

Selection.ListObject

The rules for ListObjects, or at least what I’m guessing are the rules, are different. There’s nothing I can find in Help, so here’s what I made up:

Returns the ListObject intersected by the Selection. If more than one ListObject intersects the Selection, the ListObject that was created earliest is returned.

None of the pivot table’s “upper-left corner” stuff. If the selection intersects the table, the table is returned. So below Selection.Listobject returns Table3.

listobject selection 1

When the Selection intersects multiple ListObjects, it looks to me like Selection.ListObject returns the one that was created earliest. With the selection below, that means that it returns Table1.

listobject selection 2

In Conclusion

Now I have even more reasons to never use Selection.ListObject or Selection.PivotTable! They’re both quirky, and I don’t think I could expect users to know that if they select more than one table, they’ll get the oldest one (or for that matter, that they’d get any one). And for a pivot table, it would be kind of fussy to insist the upper-left corner of the selection be in the pivot table.

I’m sticking with ActiveCell. I think that’s the way Range.PivotTable and Range.Selection should have been designed as well. In other words, like Range.PivotTable does, only using ActiveCell instead of the upper-left corner.

Changing Pivot Field Label’s Case

Changing Pivot Field Label’s Case

After last week’s prodigious post I return with a tiny tip: how to change the case of the text in a pivot field’s (or item’s) label. Here’s an example of the problem:

Can't fix case

Above, I’ve noticed that drunken monkeys have hacked my computer and tried to make me look bad by messing up the “Country” label. “Not so fast!” I say and retype it correctly. However, when I click back out of the cell the label reverts to the weird capitalization. Hmmm, perhaps these fiendish monkeys are smarter than I thought!

But no, it’s just one of those Excel quirks. Simply retyping the same letters with the correct case doesn’t fix it. You have to actually change or add a character, leave the cell, and then go back in and fix the case, like this:

Step 1 – add an “x” and hit Enter

Fix Case step 1

Step 2 – type it the way you want it

Fix Case step 2

I could have sworn I’ve seen this same quirk elsewhere in Excel, or perhaps in Windows Explorer, but I looked around and don’t find similar behavior anywhere. If you have, please let me know where, and if this trick works.

Flexible Chooser Form With Apply Button

Flexible Chooser Form With Apply Button

“Apply” buttons in forms can be confusing. People sometimes think they have to hit Apply before they hit OK But OK really means “make the change and close,” while Apply means “make the change but don’t close.” Also, a Cancel button on a form with an Apply button doesn’t actually cancel actions that were applied, just those since the last apply. At least that’s the way it works in many Windows dialogs, like Windows Explorer’s:

win explorer apply cancel

Excel’s Conditional Formatting dialog adds an extra wrinkle. Below I’ve modified a rule to change the color for orange for macaroons. I haven’t hit Apply yet, so I could choose:

1. Apply to save the change and keep on working
2. OK to save the changes and exit
3. Cancel to exit without saving

CF Apply button 1

Once I hit Apply, the Cancel button changes to a Close button. At this point OK and Close mean the same thing: close the form. It seems like Close is just a placeholder for the Cancel button, which will reappear once I start to change something. It is nice that Close and Cancel actually mean what I’d expect with this dialog.

CF Apply button 2

A less confusing form might be one with just an Apply and a Close button. It’s really all you need, and the only downside haveing to click Apply and then Close instead of OK. I did this on one of my own utility forms, but in general I’ll keep using OK buttons because that’s the norm.

Adding an Apply Button to My Flexible Chooser Form

Back in A Flexible VBA Chooser Form I showed how to create a simple form to which you pass some values and which returns a choice. The example let the user pick from a list of pivot fields and then highlighted the field’s range and showsed some information about it. For this post, I modified that code to add an “Apply” button, so you can stay in the form and show info for different fields as long as you want.

Much of the form’s code is unchanged from the earlier post, so read it if you want more background. Its “ClosedWithOk” property is now a more flexible FormState one that stores whether the Apply, OK or Close button was clicked. The code that calls the form is also mostly similar, with a Do While loop added to manage the Apply button. Here it is:

Sub ShowPivotFieldInfo()

Dim pvt As Excel.PivotTable
Dim lo As Excel.ListObject
Dim StartingCell As Excel.Range
Dim i As Long
Dim FormState As String
Dim DoneWithForm As Boolean
Dim PivotFieldNames() As String
Dim pvtField As Excel.PivotField
Dim ChosenName As String

Set pvt = ActiveSheet.PivotTables("pvtRecordTemps")
Set lo = ActiveSheet.ListObjects("tblRecordTemps")
Set StartingCell = ActiveCell
With pvt
    ReDim PivotFieldNames(1 To .VisibleFields.Count) As String
    For i = 1 To .VisibleFields.Count
        PivotFieldNames(i) = .VisibleFields(i).Name
    Next i
    DoneWithForm = False
    Do While Not DoneWithForm
        ChosenName = GetChoiceFromChooserForm(PivotFieldNames, "Choose a Pivot Field", FormState)
        DoneWithForm = (FormState <> "Apply")
        If ChosenName = vbNullString Then
            GoTo Exit_Point
        End If
        Set pvtField = .PivotFields(ChosenName)
        With pvtField
            Union(.DataRange, lo.ListColumns(.SourceName).DataBodyRange).Select
            MsgBox Title:=.SourceName, _
                   Prompt:="The SourceName for " & ChosenName & " is:" & vbCrLf & vbCrLf & .SourceName
        End With
    Loop
End With

Exit_Point:
StartingCell.Select
End Sub

I had to add a ByRef variable, “FormState,” to the function that initializes and gets the choice from the userform. That’s because, in addition to returning the choice, this function now returns whether the OK, Apply or Close button was clicked:

Function GetChoiceFromChooserForm(strChoices() As String, strCaption As String, ByRef FormState As String) As String
Dim ufChooser As frmChooser
Dim strChoicesToPass() As String

ReDim strChoicesToPass(LBound(strChoices) To UBound(strChoices))
strChoicesToPass() = strChoices()
Set ufChooser = New frmChooser
With ufChooser
    .Caption = strCaption
    .ChoiceList = strChoicesToPass
    .Show
    FormState = .FormState
    If Not FormState = "Close" Then
        GetChoiceFromChooserForm = .ChoiceValue
    End If
End With
End Function

Pivot field lister with apply

Download?

I’m glad you asked. Here it is.

Copy an xlsm to an xlsx

Copy an xlsm to an xlsx

This post features code I came up with to copy an xlsm to an xlsx. It has a few characteristics:

  • The code lives in the “master” workbook, i.e., the one that’s copied. It’s not in an addin.
  • The copy is an xlsx, stripped of any ribbon menus or VBA,
  • Tables in the master workbook are disconnected from any external data sources.
  • Any pivot tables pointing at tables in the master workbook are now pointing at their newly created copies in the copied workbook.
  • The copied workbook and master workbook are both still open after the code runs.

I looked at a few options when designing this system.

Creating a Workbook Copy
The most attractive choice for saving a copy of a workbook would seem to be the nicely named SaveCopyAs function, which keeps the master workbook open while saving a copy where you specify. Unfortunately, it won’t let you save in another format, so can’t be used to save an xlsm as an xlsx.

The second choice would be the SaveAs function, which does allow you to save in different formats. However, when you do the master workbook closes and the VBA stops running. Not impossible to work around, but I don’t like it.

Probably the best choice, at least in theory, is to run the process from an addin. Such an addin has application-level code to check whether you open any master workbooks. When you do, the ribbon menu is activated, with a button for copying the master. Since all the code is in the addin, the master workbook can be an xlsx and you can use SaveCopyAs. I’ve done a number of projects like this and they lend themselves to better coding practices, such as separating the presentation (pivot tables) from the code and the data. However, my project had just one user and the data sources are all external, so it’s simpler and quite maintainable to give them a workbook with both code and pivot tables. I hope.

So, what I’m actually using is ThisWorkbook.Sheets.Copy, which copies all the sheets. It has a few advantages. Since it’s only copying sheets the only code that gets copied would be in the ThisWorkbook or worksheet modules. I don’t have any so it’s not an issue. (The code would also get deleted when the workbook is saved as an xlsx, but I’m not sure if the user would be prompted about that when they close it). Likewise the ribbon tab, which in included in its own folder in the zip file that constitutes an xlsx or xlsm doesn’t get transferred.

There is one big issue with this method: since we’re copying individual sheets, albeit all of them all at once, any references to other worksheets still point at those worksheets in the master workbook. They don’t automatically transfer over to the new copies. In my case the only references to other sheets are pivot table sources – all other data is external. So I needed a way to point the pivot tables at their respective tables in the new workbook.

Fixing Pivot Table Data Sources

Again the the most appealing method, the pivot table’s ChangeConnection property, won’t work. It’s only for external connections, such as to a SQL Server database or web page. It doesn’t work for pivots connected to tables in the workbook.

My next idea was to modify the SourceData property for each PivotCache in the new workbook. According to Excel 2010 help, this is a read/write property, so it seems pretty straightforward to alter. After several attempts and some web searching I discovered it only works for pivot caches used by only one pivot table. If more than one pivot table points at a cache, PivotCache.SourceData isn’t your friend.

Happily, pivot tables also have a SourceData property. But, of course, there’s a catch here too. if you set two pivot tables’ SourceProperty to the exact same range, two pivot caches will be created. I want as few pivot caches as possible in a workbook, one for each distinct range.

So I came up with code that loops through each pivot table in the new workbook. First it calculates the string for the corrected data source, i.e., the external one with the workbook part stripped away. For example, if we remove the workbook part, e.g., “Master.xlsm”, from “Master.xlsm!tblPivotSource”, we get “tblPivotSource” which we can use to point at the correct table in the copied workbook.

As the code loops through the pivot tables it does one of two things:

  1. It sets the pivot table’s SourceData to the newly calculated NewSourceData variable. It only does this for the first pivot table with that source. Setting the SourceData creates a new pivot cache that uses the same SourceData.
  2. In each loop it first checks if there’s already a pivot cache with that source, which will be true if step 1 has already happened. If that’s the case, I set the pivot’s CacheIndex property to the index of that cache.

(Note that steps 1 and 2 happen in reverse order in the code, it’s just easier to describe them in this order.)

One very nice thing is that if a pivot cache no longer has any pivot tables pointing at it, that cache is automatically deleted.

The end result is that the copied workbook now has the same number of pivot caches as it started out with, each pointing at a table within the copied workbook. As mentioned earlier the listobjecs are also unhooked from their external connections.

Without further ado:

Sub CreateWorkbookCopy()
Dim wbWorkbookCopy As Excel.Workbook
Dim WorkbookCopyName As String
Dim ws As Excel.Worksheet
Dim lo As Excel.ListObject
Dim pvt As Excel.PivotTable
Dim pvtCache As Excel.PivotCache
Dim NewSourceData As String

Const SUBFOLDER_NAME As String = "Copied_Workbooks"

'Copies all worksheets, but not VBA or Ribbon
ThisWorkbook.Sheets.Copy

Set wbWorkbookCopy = ActiveWorkbook
With wbWorkbookCopy
    For Each ws In .Worksheets
        'Delete all listobject connections
       For Each lo In ws.ListObjects
            lo.Unlink
        Next lo
        'the pivot table caches are still pointing at ThisWorkbook, so
       'point them at wbWorkbookCopy
       For Each pvt In ws.PivotTables
            'note that the "!" is the delimiter between a workbook and table
           NewSourceData = Mid(pvt.SourceData, InStr(pvt.SourceData, "!") + 1)
            'if we just set the SourceData property we get a new cache for each sheet
           For Each pvtCache In wbWorkbookCopy.PivotCaches
                'if a previous loop has already re-pointed a pivot table,
               'then a new PivotCache with that SourceData has been created,
               'so just set the pivot table's cache to that
               If pvtCache.SourceData = NewSourceData Then
                    pvt.CacheIndex = pvtCache.Index
                Else
                    pvt.SourceData = NewSourceData
                End If
            Next pvtCache
        Next pvt
        'apparently PivotCaches are automatically deleted if no pivot tables are pointing at them
   Next ws

    If Not SubFolderExists(ThisWorkbook.Path & Application.PathSeparator & SUBFOLDER_NAME) Then
        MakeSubFolder ThisWorkbook.Path & Application.PathSeparator & SUBFOLDER_NAME
    End If
    WorkbookCopyName = Replace(ThisWorkbook.Name, ".xlsm", "") & "_copy_" & Format(Now(), "yyyy_mm_dd_hh_mm_ss") & ".xlsx"
    .SaveAs Filename:=ThisWorkbook.Path & Application.PathSeparator & SUBFOLDER_NAME & _
                      Application.PathSeparator & WorkbookCopyName, FileFormat:=51
End With
End Sub

For many useful functions involving pivot caches, please visit this wonderful Contextures page.